Формула мощности тока

Механическая работа и мощность

Второй закон Ньютона в импульсной форме позволяет определить, как меняется скорость тела по модулю и направлению, если в течение некоторого времени на него действует определенная сила:

В механике также важно уметь вычислять изменение скорости по модулю, если при перемещении тела на некоторый отрезок на него действует некоторая сила. Воздействия на тела сил, приводящих к изменению модуля их скорости, характеризуется величиной, зависящей как от сил, так и от перемещений

Эту величину в механике называют работой силы.

Работа силы обозначается буквой А. Это скалярная физическая величина. Единица измерения — Джоуль (Дж).

Работа силы равна произведению модуля силы, модуля перемещения и косинусу угла между ними:

Механическая работа совершается, если:

  1. На тело действует сила.
  2. Под действием этой силы тело перемещается.
  3. Угол между вектором силы и вектором перемещения не равен 90 градусам (потому что косинус прямого угла равен нулю).

Пример №1. Груз массой 1 кг под действием силы 30 Н, направленной вертикально вверх, поднимается на высоту 2 м. Определить работу, совершенной этой силой.

Так как перемещение и вектор силы имеют одно направление, косинус угла между ними равен единице. Отсюда:

Работа различных сил

Любая сила, под действием которой перемещается тело, совершает работу. Рассмотрим работу основных сил в таблице.

Модуль силы тяжести: F тяж = mg

Работа силы тяжести: A = mgs cosα

Модуль силы трения скольжения: F тр = μN = μmg

Работа силы трения скольжения: A = μmgs cosα

Модуль силы упругости: F упр = kx

Работа силы упругости:

Работа силы упругости

Работа силы упругости не может быть определена стандартной формулой, так как она может применяться только для постоянной по модулю силы. Сила же упругости меняется по мере сжатия или растяжения пружины. Поэтому берется среднее значение, равное половине суммы сил упругости в начале и в конце сжатия (растяжения):

Нужно также учесть, что перемещение тела под действием силы упругости равно разности удлинения пружины в начале и конце:

Перемещение и направление силы упругости всегда сонаправлены, поэтому угол между ними нулевой. А косинус нулевого угла равен 1. Отсюда работа силы упругости равна:

Работы силы трения покоя

Работы силы трения покоя всегда равна 0, так как под действием этой силы тело не сдвигается с места. Исключение составляет случай, когда покоящееся тело лежит на подвижном предмете, на который действует некоторая сила. Относительно системы координат, связанной с подвижным предметом, работа силы трения покоя будет нулевой. Но относительно системы отсчета, связанной с Землей, эта сила будет совершать работу, так как тело будет двигаться, оставаясь на поверхности движущегося предмета.

Пример №2. Груз массой 100 кг волоком перетащили на 10 м по плоскости, поверхность которой имеет коэффициент трения 0,4. Найти работу, совершенной силой трения скольжения.

A = μmgs cosα = 0,4∙100∙10∙10∙(–1) = –4000 (Дж) = –4 (кДж)

§ 26.2. Мощность

Часто важна «быстрота» совершения работы, которая определяется мощностью.

Мощностью N называют отношение совершенной работы А к промежутку времени t, за который эта работа совершена: N = A/t

Например, строительный кран поднимает сотни кирпичей на высоту многоэтажного дома за считаные секунды, а человеку для этого потребовалось бы несколько дней. Значит, мощность подъемного крана во много раз больше мощности человека.

Единица мощности. За единицу мощности в СИ принимают такую мощность, при которой работа в 1 Дж совершается за 1 с. Эту единицу мощности назвали ватт (Вт): 1 Вт = Дж/с

Часто используют также такие единицы мощности, как киловатт (1 кВт = 10 3 Вт) и мегаватт (1 МВт = 10 6 Вт).

Чтобы получить представление о единицах мощности, решим задачу.

Решим задачу

Какую мощность развивает школьник массой 50 кг, взбегая с первого этажа на пятый за полминуты? Высоту этажа примем равной 3 м.

«Мощность» человеческого разума. Итак, человек может развивать мощность всего в десятки и сотни ватт. Зато мощность созданных разумом человека двигателей в тысячи, миллионы и даже миллиарды раз превышает мощность самого человека (рис. 26.1). Например, мощность легкового автомобиля достигает 100 кВт, а большого пассажирского авиалайнера — 100 МВт. Наибольшую на сегодня мощность развивают двигатели космических ракет — сотни тысяч МВт.

Рис. 26.1. Сравнение мощности человека с мощностью созданных им двигателей

Как выразить мощность через силу и скорость? Пройденный путь s выражается через скорость v и время движения t формулой s = vt. Поэтому

Таким образом, мощность равна произведению модуля силы на модуль скорости.

Следовательно, чтобы увеличить силу при той же мощности двигателя, надо уменьшить скорость. Вот почему на подъеме водитель производит переключение на первую скорость: чтобы увеличить силу тяги двигателя при той же мощности, надо уменьшить скорость движения.

Источник

Работы силы, формула

Сила, приложенная к телу и перемещающая его, совершает работу (рис. 1).

Работа силы — это скалярное произведение вектора силы на вектор перемещения.

Работу, совершаемую силой, можно посчитать, используя векторный или скалярный вид записи такой формулы:

Векторный вид записи

Для решения задач правую часть этой формулы удобно записывать в скалярном виде:

\

\( F \left( H \right) \) – сила, перемещающая тело;

\( S \left( \text \right) \) – перемещение тела под действием силы;

\( \alpha \) – угол между вектором силы и вектором перемещения тела;

Работу обозначают символом \(A\) и измеряют в Джоулях. Работа – это скалярная величина.

В случае, когда сила постоянная, формула позволяет рассчитать работу, совершенную силой за полное время ее действия.

Если сила изменяется со временем, то в каждый конкретный момент времени будем получать мгновенную работу. Эти, мгновенные значения для разных моментов времени будут различаться.

Рассмотрим несколько случаев, следующих из формулы:

  1. Когда угол между силой и перемещением острый, работа силы положительная;
  2. А если угол тупой — работа отрицательная, так как косинус тупого угла отрицательный;
  3. Если же угол прямой – работа равна нулю. Сила, перпендикулярная перемещению, работу не совершает!

Работа и мощность при вращательном движении

Изменение кинетической энергии механической системы равно алгебраической сумме работ всех внешних и внутренних сил, действующих на эту систему

dT = dAвнеш + dAвнутр . (1.55)

При вращении твердого тела относительно неподвижной оси элементарная работа всех внешних сил, действующих на твердое тело, равна приращению только кинетической энергии, так как его потенциальная энергия при этом не меняется. Следовательно

.

С учетом того, что Iz dw = Mz dt , получим

dA = Mz w dt = Mz dj . (1.56)

Полная работа внешних сил при повороте твердого тела на некий угол j равна:

В случае, если Mz=const, то последнее выражение упрощается:

Таким образом,работа внешних сил при вращательном движении твердого тела вокруг неподвижной оси определяется действием момента Mz этих сил относительно данной оси.

При вращательном движении твердого тела относительно неподвижной оси мощность определяется выражением

Примеры решения задач на работу и мощность

Пример 1.Потенциальная энергия частицы имеет вид

аМN

Решение

Используя выражение, связывающее потенциальную энергию частицы с силой, действующей на неё, получим

Работа сил потенциального поля равна убыли потенциальной энергии

По известным координатам точек M и N находим

Пример 2. Частица совершает перемещение в плоско- сти ХУ из точки с координатами (1,2) м в точку с координатами (2,3) м под действием силы

Н.

Решение

Элементарная работа, совершаемая силой

Работа при перемещении частицы из точки 1 в точку 2 определится интегрированием

Подставляя числовые значения, получим

Пример 3.Тело массой m=1,0 кг падает с высоты h=20 м. Пренебрегая сопротивлением воздуха найти среднюю мощность, развиваемую силой тяжести на пути h, и мгновен- ную мощность на высоте h/2.

Решение

Средняя мощность Nср, развиваемая силой тяжести на пути h, определяется выражением

Запишем выражение координаты y(t) тела от времени при свободном падении с высоты h с нулевой начальной скоростью:

где g – ускорение свободного падения.

Полное время t падения тела с высоты h определим из этого выражения при условии y = 0:

Среднее значение скорости равно

Мгновенная мощность, развиваемая силой тяжести на высоте h/2, равна

Расстояние, пройденное телом за промежуток времени t1, равно

откуда

Мгновенная скорость υ1тела на высоте h/2 , равна

Выполняя вычисления, получим

Пример 4.Маховиквращается по закону, выражаемому уравнением

АрадВрад/срад/с 2 .Iкг·м 2.

Решение

Средняя мощность по определению

,(1)

где t- время торможения до полной остановки, А- работа, совершаемая за это время.

Работа при вращательном движении

С учётом основного уравнения динамики вращательного движения M=Iε, получим

где

t

Время торможения до остановки найдём из условия

откуда

С учётом значений t, найдём

После интегрирования (2) получим абсолютное значение работы сил торможения

Подставляя (3) в (1) найдём

Законы сохранения

Любое тело (или совокупность тел) представляет собой, по существу, систему материальных точек. Состояние системы характеризуется одновременным заданием координат и скоро- стей всех ее частиц.При движении системы ее состояние изменяется со временем. Существуют, однако, такие функции координат и скоростей, образующих систему частиц, которые способны сохраняться во времени. К ним относятся энергия, импульс и момент импульса.

В соответствии с этим имеют место три закона сохране- ния – закон сохранения энергии, закон сохранения импульса и закон сохранения момента импульса, которые выполняются в замкнутых системах.

Система называется замкнутой, если она не обменивается с другими телами, не входящими в эту систему, соответ- ственно энергией, импульсом, моментом импульса. Законы сохранения энергии, импульса и момента импульса можно получить исходя из основных уравнений динамики, однако, следует иметь в виду, что эти законы обладают гораздо большей общностью, чем законы Ньютона, и должны рас- сматриваться как самостоятельные фундаментальные принци- пы физики, относящиеся к основным законам природы.

Законы сохранения являются эффективным инструмен- том исследования. С помощью законов сохранения можно без решения уравнения движения получить ряд важнейших данных о протекании механических процессов.

Закон сохранения импульса

Импульс системы

i

Изменение импульса системы, согласно законам динамики, равно результирующему вектору импульса внешних сил:

В соответствии с этим уравнением, импульс системы может изменяться под действием только импульса внешних сил. Импульсы внутренних сил не могут изменить импульс системы. Отсюда непосредственно вытекает условие замкнутости системы и закон сохранения импульса импульс замкнутой механической системы остается постоянным:

Источник

Работа силы тяжести — разность потенциальной энергии

Рассмотрим теперь следующий пример. Яблоко массой 0,2 кг упало на садовый стол с ветки, находящейся на высоте 3 метра от поверхности земли. Столешница располагается на высоте 1 метр от поверхности (рис. 3). Найдем работу силы тяжести в этом процессе.

Посчитаем потенциальную энергию яблока до его падения и энергию яблока на столешнице.

\( E_ \left(\text \right) \) – начальная потенциальная энергия яблока;

\( E_ \left(\text \right) \) – конечная потенциальная энергия яблока;

Примечание: Работу можно рассчитать через разность потенциальной энергии тела.

Потенциальную энергию будем вычислять, используя формулу:

\[ \large E_

= m \cdot g \cdot h\]

\( m \left( \text\right) \) – масса яблока;

\( h \left( \text\right) \) – высота, на которой находится яблоко относительно поверхности земли.

Начальная высота яблока над поверхностью земли равна 3 метрам

\

Потенциальная энергия яблока на столе

\

Теперь найдем разницу потенциальной энергии яблока в конце падения и перед его началом.

\[ \large \Delta E_

= E_ — E_ \]

\[ \large \Delta E_

= 2 – 6 = — 4 \left(\text \right) \]

Важно помнить: Когда тело падает на землю, его потенциальная энергия уменьшается. Сила тяжести при этом совершает положительную работу!. Чтобы работа получилась положительной, в правой части формулы перед \( \Delta E_

Чтобы работа получилась положительной, в правой части формулы перед \( \Delta E_

\) дополнительно допишем знак «минус».

Значит, работа, которую потребовалось совершить силе тяжести, чтобы яблоко массой 0,2 кг упало с высоты 3 м на высоту 1 метр, равняется 4 Джоулям.

Примечания:

  1. Если тело падает на землю, работа силы тяжести положительна;
  2. Когда мы поднимаем тело над землей, мы совершаем работу против силы тяжести. Наша работа при этом положительна, а работа силы тяжести будет отрицательной;
  3. Сила тяжести относится к консервативным силам. Для консервативных сил перед разностью потенциальной энергии мы дописываем знак «минус»;
  4. Работа силы тяжести не зависит от траектории, по которой двигалось тело;
  5. Работа для силы \(\displaystyle F_>\) зависит только от разности высот, в которых тело находилось в конечный и начальный моменты времени.

Рисунок 4 иллюстрирует факт, что для силы \(\displaystyle F_>\) работа зависит только от разности высот и не зависит от траектории, по которой тело двигалось.

Мощность

Мощность — физическая величина, показывающая, какую работу совершает тело в единицу времени. Мощность обозначается буквой N. Единица измерения: Ватт (Вт). Численно мощность равна отношению работы A, совершенной телом за время t:

Рассмотрим частные случаи определения мощности в таблице.

Мощность при равномерном прямолинейном движении тела

Работа при равномерном прямолинейном движении определяется формулой:

F т — сила тяги, s — перемещение тела под действием этой силы. Отсюда мощность равна:

Мощность при равномерном подъеме груза

Когда груз поднимается, совершается работа, по модулю равная работе силе тяжести. За перемещение в этом случае можно взять высоту. Поэтому:

Мгновенная мощность при неравномерном движении

Выше мы уже получили, что мощность при постоянной скорости равна произведению этой скорости на силу тяги. Но если скорость постоянно меняется, можно вычислить мгновенную мощность. Она равна произведению силы тяги на мгновенную скорость:

Мощность силы трения при равномерном движении по горизонтали

Мощность силы трения отрицательна так же, как и работа. Это связано с тем, что угол между векторами силы трения и перемещения равен 180 о (косинус равен –1). Учтем, что сила трения скольжения равна произведению силы нормальной реакции опоры на коэффициент трения:

Пример №3. Машина равномерно поднимает груз массой 10 кг на высоту 20 м за 40 с. Чему равна ее мощность?

Коэффициент полезного действия

Не вся работа, совершаемая телами, может быть полезной. В реальном мире на тела действует несколько сил, препятствующих совершению работы другой силой. К примеру, чтобы переместить груз на некоторое расстояние, нужно совершить работу гораздо большую, чем можно получить при расчете по формулам выше.

  • Работа затраченная — полная работа силы, совершенной над телом (или телом).
  • Работа полезная — часть полной работы силы, которая вызывает непосредственно перемещение тела.
  • Коэффициент полезного действия (КПД) — процентное отношение полезной работы к работе затраченной. КПД обозначается буквой «эта» — η. Единицы измерения эта величина не имеет. Она показывает эффективность работы механизма или другой системы, совершающей работу, в процентах.

КПД определяется формулой:

Работа может определяться как произведение мощности на время, в течение которого совершалась работа:

Поэтому формулу для вычисления КПД можно записать в следующем виде:

Частые случаи определения КПД рассмотрим в таблице ниже:

Источник

ИНФОФИЗ — мой мир.

Весь мир в твоих руках — все будет так, как ты захочешь

Весь мир в твоих руках — все будет так, как ты захочешь

  • Главная
  • Мир физики
    • Физика в формулах
    • Теоретические сведения
    • Физический юмор
    • Физика вокруг нас
    • Физика студентам
      • Для рефератов
      • Экзамены
      • Лекции по физике
      • Естествознание
  • Мир астрономии
    • Солнечная система
    • Космонавтика
    • Новости астрономии
    • Лекции по астрономии
    • Законы и формулы — кратко
  • Мир психологии
    • Физика и психология
    • Психологическая разгрузка
    • Воспитание и педагогика
    • Новости психологии и педагогики
    • Есть что почитать
  • Мир технологий
    • World Wide Web
    • Информатика для студентов
      • 1 курс
      • 2 курс
    • Программное обеспечение компьютерных сетей
      • Мои лекции
      • Для студентов ДО
      • Методические материалы
  • Физика школьникам
  • Физика студентам
  • Астрономия
  • Информатика
  • ПОКС
  • Арх ЭВМ и ВС
  • Методические материалы
  • Медиа-файлы
  • Тестирование

Наблюдай внимательно за природой, и ты будешь всё понимать намного лучше.

Альберт Эйнштейн

Электроэнергия и источник питания

Теперь давайте подробнее разберем нашу схему.  Немного развернем ее в пространстве для удобства, игнорируя ГОСТ по обозначению источника питания:

Как мы помним с прошлой статьи, электрический ток бежит от точки с бОльшим потенциалом, то есть от плюса, к точке с мЕньшим потенциалом, то есть к минусу. Или говоря простым языком: от плюса к минусу. В настоящий момент у нас выключатель разомкнут. Можно сказать, что мы “оборвали” нашу цепь выключателем. В среде электриков и электронщиков говорят, что цепь ” в обрыве”. Ток не бежит, лампочка не горит.

Но вот мы ловким движением руки щелкаем выключатель и у нас цепь замыкается:

Дорога для электрического тока открыта, и он течет от плюса к минусу через лампочку накаливания, которая начинает ярко светиться.

Вроде бы все понятно, но не совсем. Кто или что заставляет светиться лампочку? Мало того, что она светит, она еще и греет!

Что самое первое появилось во Вселенной? Говорят, что время, хотя я думаю, что энергия). Энергия ниоткуда просто так не берется и никуда просто так не исчезает. Это и есть закон сохранения энергии, так что “побрейтесь” фанаты вечных двигателей).

В данном опыте у нас лампочка светит и греет. Получается, что лампочка излучает и тепловую и световую энергию. Вы ведь не забыли, что световые лучи передают энергию? В быту, например, мы используем солнечные панели, чтобы из лучиков получить электрический ток.

Но теперь вопрос такой. Если лампочка излучает световую и тепловую энергию, то откуда она ее получает? Разумеется, от источника питания. Фраза “источник питания” уже говорит сама за себя. Берет энергию наша лампочка прямо от источника питания через проводкИ. Энергия, которая течет через проводочки, называется электроэнергией.

А откуда берет электроэнергию источник питания? Здесь уже есть разные способы добычи электроэнергии. Это может быть падающий поток воды, который крутит мощные лопасти вертушки, которая работает как генератор. Это могут быть химические реакции в батарейках и акумах. Это может быть даже солнечная панелька или вообще какой-нибудь элемент, типа Пельтье, который может вырабатывать электрический ток под действием разности температур. Способов много, а эффект один. Сделать так, чтобы появилась ЭДС.

Работа силы тяжести — разность потенциальной энергии

Рассмотрим теперь следующий пример. Яблоко массой 0,2 кг упало на садовый стол с ветки, находящейся на высоте 3 метра от поверхности земли. Столешница располагается на высоте 1 метр от поверхности (рис. 3). Найдем работу силы тяжести в этом процессе.

Посчитаем потенциальную энергию яблока до его падения и энергию яблока на столешнице.

\( E_ \left(\text \right) \) – начальная потенциальная энергия яблока;

\( E_ \left(\text \right) \) – конечная потенциальная энергия яблока;

Примечание: Работу можно рассчитать через разность потенциальной энергии тела.

Потенциальную энергию будем вычислять, используя формулу:

\[ \large E_

= m \cdot g \cdot h\]

\( m \left( \text\right) \) – масса яблока;

\( h \left( \text\right) \) – высота, на которой находится яблоко относительно поверхности земли.

Начальная высота яблока над поверхностью земли равна 3 метрам

\

Потенциальная энергия яблока на столе

\

Теперь найдем разницу потенциальной энергии яблока в конце падения и перед его началом.

\[ \large \Delta E_

= E_ — E_ \]

\[ \large \Delta E_

= 2 – 6 = — 4 \left(\text \right) \]

Важно помнить: Когда тело падает на землю, его потенциальная энергия уменьшается. Сила тяжести при этом совершает положительную работу!. Чтобы работа получилась положительной, в правой части формулы перед \( \Delta E_

Чтобы работа получилась положительной, в правой части формулы перед \( \Delta E_

\) дополнительно допишем знак «минус».

Значит, работа, которую потребовалось совершить силе тяжести, чтобы яблоко массой 0,2 кг упало с высоты 3 м на высоту 1 метр, равняется 4 Джоулям.

Примечания:

  1. Если тело падает на землю, работа силы тяжести положительна;
  2. Когда мы поднимаем тело над землей, мы совершаем работу против силы тяжести. Наша работа при этом положительна, а работа силы тяжести будет отрицательной;
  3. Сила тяжести относится к консервативным силам. Для консервативных сил перед разностью потенциальной энергии мы дописываем знак «минус»;
  4. Работа силы тяжести не зависит от траектории, по которой двигалось тело;
  5. Работа для силы \(\displaystyle F_>\) зависит только от разности высот, в которых тело находилось в конечный и начальный моменты времени.

Рисунок 4 иллюстрирует факт, что для силы \(\displaystyle F_>\) работа зависит только от разности высот и не зависит от траектории, по которой тело двигалось.

Определение и формула мощности тока

Определение

Мощность тока – есть работа тока в единицу времени:

$$P=\frac{A}{\Delta t}$$

Формулой для вычисления мощности можно считать выражение:

В том случае, если участок цепи содержит источник тока, то формулу мощности можно представить в виде:

где $\left(\varphi_{1}-\varphi_{2}\right)$ – разность потенциалов,
$\varepsilon$ – ЭДС источника, который включен в цепь.

Выражение (5) является интегральной записью. Это выражение можно представить в дифференциальной форме, если использовать понятие
удельной мощности ($P_{u d}=\frac{\Delta P}{\Delta V}$ – мощность, развиваемая током в
единице объема проводника):

где j – плотность тока, $\rho$ – удельное сопротивление.

Урок физики «Мощность»

  • Познакомиться с мощностью как новой физической величиной;
  • Развивать умения выводить формулы, пользуясь необходимыми знаниями прошлых уроков; развивать логическое мышление, умение анализировать, делать выводы;
  • Применять знания по физике в окружающем мире.

Урок сегодня я хочу начать с вопросов к вам. (Слайд 2).

1. Как вы думаете, имеет ли какое-то отношение лошадь к физике?

2. С какой физической величиной связана лошадь?

Мощность – правильно, это и есть тема нашего урока. Запишем ее в тетрадь.

Действительно, мощность двигателей автомобилей, транспортных средств до сих пор измеряют в лошадиных силах. Сегодня на уроке мы с вами узнаем всё о мощности с точки зрения физики. Давайте подумаем вместе и определим, что мы должны знать о мощности, как о физической величине.

Существует план изучения физических величин: ( Слайд 3).

  1. Определение;
  2. Вектор или скаляр;
  3. Буквенное обозначение;
  4. Формула;
  5. Прибор для измерения;
  6. Единица величины.

Этот план и будут целью нашего урока.

Начнем с примера из жизни. Вам необходимо набрать бочку воды для полива растений. Вода находится в колодце. У вас есть выбор: набрать при помощи ведра или при помощи насоса. Напомню, что в обоих случаях механическая работа, совершенная при этом будет одинаковой. Конечно же, большинство из вас выберут, насос.

Вопрос: В чем разница при выполнении одной и той же работы?

Ответ: Насос выполнит эту работу быстрее, т.е. затратит меньшее время.

1) Физическая величина, характеризующая быстроту выполнения работы, называют мощностью. ( Слайд 4).

2) Скаляр, т.к. не имеет направления.

5) = [ 1 Дж/с] =

Название этой единицы мощности дано в честь английского изобретателя паровой машины (1784г) Джеймса Уатта. ( Слайд 5).

6) 1 Вт = мощности, при которой за время 1 с совершается работа в 1 Дж. ( Слайд 6).

Самолеты, автомобили, корабли и другие транспортные средства движутся часто с постоянной скоростью. Например, на трассах автомобиль достаточно долго может двигаться со скоростью 100 км/ч. ( Слайд 7).

Вопрос: от чего зависит скорость движения таких тел?

Оказывается, она напрямую зависит от мощности двигателя автомобиля.

Зная, формулу мощности мы выведем еще одну, но для этого давайте вспомним основную формулу для механической работы.

Учащийся выходит к доске для вывода формулы. ( Слайд 8).

Пусть сила совпадает по направлению со скоростью тела. Запишем формулу работы этой силы.

2.При постоянной скорости движения , тело проходит путь определяемой формулой

Подставляем в исходную формулу мощности: , получаем — мощность.

У нас получилась еще одна формула для расчета мощности, которую мы будем использовать при решении задач.

Эта формула показывает ( Слайд 9), что при постоянной мощности двигателя, изменением скорости можно менять силу тяги автомобиля и наоборот, при изменении скорости автомобиля можно менять силу тяги двигателя.

Вопрос. Когда нужна большая сила тяги?

а)При подъеме в гору. Правильно, тогда водитель снижает скорость.

б) При вспашке земли тракторист движется с малой скоростью, чтобы была большая сила тяги. Для этого водитель, тракторист, машинист, токарь, фрезеровщик часто используют коробку передач, которая позволяет менять скорость. ( Слайд 10).

Мощность всегда указывают в паспорте технического устройства. И в современных технических паспортах автомобилей есть графа:

Мощность двигателя: кВт / л.с.

Следовательно, между этими единицами мощности существует связь.

Вопрос: А откуда взялась эта единица мощности? ( Слайд 11).

Дж. Уатту принадлежит идея измерять механическую мощность в «лошадиных силах». Предложенная им единица мощности была весьма популярна, но в 1948 г. Генеральной конференцией мер и весов была введена новая единица мощности в международной системе единиц – ватт. ( Слайд 12).

1 Вт = ,00013596 л.с.

Эта единица мощности была изъята из обращения с 1 января 1980 г.

Примеры мощностей современных автомобилей. ( Слайд 13,14).

Различные двигатели имеют разные мощности.

Вопрос: А какова мощность человека?

Текс учебника, § 54. Мощность человека при нормальных условиях работы в среднем составляет 70-80 Вт. Совершая прыжки, взбегая по лестнице, человек может развивать мощность до 730 Вт, а в отдельных случаях и большую.

Вопрос: А чем «живые двигатели» отличаются от механических? ( Слайд 15).

Ответ: Тем, что «живые двигатели» могут изменять свою мощность в несколько раз.

1.Расскажите все, что вы знаете о мощности. Ответ по плану изучения физической величины.

Источник

Как определить силу тяги двигателя. Примеры решения задач

Задача 1

Автомобиль может разгоняться до 216 км/ч. Максимальная мощность двигателя равна 96 кВт. Определите максимальную силу тяги двигателя.

Решение

Переведем киловатты в ватты, а километры в час — в метры в секунду:

\(96\;\times\;1000=96000\;Вт\)

\(\frac{216\times1000}{3600}=60\frac мс\)

\(F_т\;=\;\frac N v = \frac{96000}{60} = 1600 Н\)

Задача 2

Троллейбус весом 12 тонн за 5 секунд проезжает по горизонтальной дороге 10 метров. Сила трения равна 2,4 кН. Определите силу тяги, которую развивает двигатель.

Решение

Переведем тонны в килограммы, а килоньютоны в ньютоны:

\(12\;\times\;1000=12000\;кг\)

\(2,4\;\times\;1000=2400\;Н\)

\(F_т-\;F_{тр}=m\;\times\;a\), следовательно, \(F_т=m\times a\;+\;F_{тр}\)

Чтобы определить ускорение а, воспользуемся формулой \(s\;=\;\frac{at^2}2\)

Подставив численные значения величин, получаем:

\(a\;=\;\frac{2s}{t^2}^{}=\frac{20}{25}\;=\;0,8\)

\(F_т=\;12000\times0,8\;+\;2400\;=\;12000\;Н\;=\;12\;кН\)

Задача 3

Транспорт, весящий 4 тонны, едет в гору. Уклон — 1 метр на каждые 25 метров пути. \(\mu\) — 0,1 от силы тяжести, \(а = 0\). Определите силу тяги.

Решение

Начертим схему:

\(m\times g\;+\;N\;+\;F_{тр\;}+\;F_т\;=\;m\times a\)

Сделаем проекции на координатные оси:

\(OX: -\;mg\;\times\;\sin\alpha\;-\;F_{тр\;}+\;F_т\;=\;0\)

\(OY: N\;-\;mg\;\times\;\cos\alpha\;=\;0 => N\;=\;mg\;\times\;\cos\alpha\;\)

\(F_{тр}\;=\;\mu N\;=\;\mu mg\;\times\;\cos\alpha\)

Подставим значение \(F_{тр}\) в уравнение \(OX\) и определим \(F_т\):

\(-mg\;\times\;\sin\alpha\;-\;\mu\)

\(mg\;\times\;\cos\alpha\;+\;F_т\;=\;0\)

\(=> F\;=\;mg\;\left(\sin\alpha\;+\;\mu\;\times\;\cos\alpha\right)\)

Найдем синус и косинус \(\alpha\), подставим их в общую формулу:

\(\sin\alpha\;=\;\frac hl\;=\;\frac1{25}\)

\(\cos\alpha\;=\;\frac{\sqrt{l^{2\;}-\;h^2}}l\;\)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector